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Abstract

Three-dimensional supersonic viscous laminar flows over symmetric corners are

considered in this paper. The characteristic features of such configurations are dis-

cussed and an historical survey on the past research work is presented. A new

contribution based on a numerical technique that solves the parabolized form of

the Navier-Stokes equations is presented. Such a method makes it possible to ob-

tain very detailed descriptions of the flowfield with relatively modest CPU time and

memory storage requirements. The numerical approach is based on a space-marching

technique, uses a finite volume discretization and an upwind flux-difference splitting

scheme (developed for the steady flow equations) for the evaluation of the invis-

cid fluxes. Second order accuracy is reached following the guidelines of the ENO

schemes. Different free-stream conditions and geometricM configurations are con-

sidered. Primary and secondary streamwise vortical structures embedded in the

boundary layer and originated by the interaction of the latter with shock waves are

detected and studied. Computed results are compared with experimental data taken

from literature.
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was in residence at the Institute for Computer Applications in Science and Engineering, (ICASE), NASA
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1 Introduction

In the design of supersonic and hypersonic vehicles, the knowledge of the flowfield in

the vicinity of interior corners (such as wing-fuselage or fin-fuselage intersections, and

box-type supersonic inlets) has a critical importance. In such areas, in fact, complex

shock/shock and shock/boundary layer interactions occur, inducing the separation of the

viscous layer and its reorganization in vortical structures dominating the shock layer.

The most outstanding consequence of such a dramatic change is an important increase in

heat fluxes, skin friction coefficients and pressures at the wall in correspondence with the

reattachment of the separated flow; transition, shock waves shapes and the efficiency of

the air-intakes that might swallow such streams are also affected.

In the last 30 years, several theoretical studies, experimental tests and, more recently,

numerical simulations have been carried out in order to investigate the above mentioned

configurations. In this paper, the attention will be focused on that part of swept shock

waves/viscous layer interactions classified as corner configurations, limited to the laminar

regime. A general discussion on the most important features characterizing such flowfields

will be proposed and an historical survey of the research conducted in the past will be

made.

Finally, a study conducted by the authors using the computational fluid dynamics as an

investigative tool will be presented. The numerical method solves the parabolized form of

the Navier-Stokes equations: advantages and limitations of such a physical modeling will

be discussed and the computational technique will be shortly described. The presence of

multiple vortical structures in the shock layer will be demonstrated and their interaction

with the wave patterns will be discussed. The effect of the local Reynolds number on

the conicity of the flow will be investigated. Moreover, obtained numerical results will

be compared, for purpose of validation, with analogous experimental data taken from
literature.

2 Supersonic corner flows

Supersonic corner flows belong to the family of swept shock wave/viscous layer interac-

tions, that in general can be found in many different forms, but that in the simplest cases

are produced by any conical shock generator (not necessarily a wedge) mounted on a flat

plate parallel to the flow. If the shock generator apex lies on the leading edge of the

plate, the configuration belongs to the intake-type class, whereas, if it is downstream the

leading edge, it is called a fin-type configuration. In the former case, the stronger shock

wave produced by the generator and the weaker shock due to the flat plate interact and

impinge on the viscous layer that is developing on the opposite surface. In the latter case,

on the other hand, there is just one shock, since the one produced by the flat plate can

be considered as vanishing.

The class of corner flows is usually defined in the literature as a particular case of intake-

type configurations, where the shock generator is a wedge and the flat plate is substituted

by another wedge. In this case, there are two strong shock waves interacting and im-

pinging on the viscous layers. Depending on whether the leading edges of the wedges

are orthogonal to the freestream or not, the corner configuration are called unswept or

swept. Moreover, if the two ramps are identical, the corner flow is defined as symmetric;
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Figure 1: Corner configuration

asymmetric otherwise.

In figure 1, a generic corner configuration is shown and the geometrical parameters that

define it are shown. In this paper, the attention will be mostly focused on symmetric

unswept corner configurations.

3 Flowfield structure

In supersonic corner configurations the presence of the wedges generates two distinct

shock waves, whose interference, close to the corner, can produce two different three-

dimensional shock configurations, called the regular reflection configuration and the Mach

disk (or irregular reflection) configuration (figure 2). Both cases are characterized by the

fulfillment of the yon Neumann conditions [1] at the intersection point (triple point), that

consists in imposing, using the Rankine-Hugoniot conditions, the matching of pressure

and conical deflection in the unknown high pressure side of the interaction point. The

difference between the two configurations is that, in the case of the Mach disk, a further

shock is necessary to satisfy the yon Neumann conditions. The Mach disk configuration is

very common in supersonic corner flows. This fact is seen in figure 3, taken from reference

[2], where the limiting curve separating regular and irregular reflection configurations in

the case of symmetric unswept corners and inviscid flows is given in terms of the freestream

Mach number and of the wedge angles. It can be seen, for instance, that wedge deflections

greater than 5 ° generate a Mach disk configuration whatever the freestream Mach number.

For completeness, it is necessary to add that, in some occasions, the von Neumann con-
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Figure 2: Possible shock interaction configurations



"2.O

(OCG)

31

I

!
'i
oi

POIN_'TR IPL E POlt,_ T'"

REGUL,_n REF LECTJON

I f

M

Figure 3: Maximum wedge deflections for regular reflections (symmetric corners) [2]

ditions cannot be satisfied, namely when the Mach number relative to the triple point is

decreased below a value dependent on the wedges angles. In this case (a third one), the

so called Guderley conditions [1] apply, that consist in inserting a Prandtl-Meyer expan-

sion at the triple point to satisfy the boundary conditions of equal pressureand conical

direction. In this last occurrence, however, the shock configuration does not change sig-

nificantly, except at the triple point [3]. In this paper, only cases where the von Neumann

conditions apply will be considered and, in particular, the attention will be concentrated

on those situations that are characterized by the Mach disk shock configuration that, as

already mentioned, is the most frequent.

The fluid-dynamic pattern typical of the above mentioned flows consists of a system of

five shock waves. Two of them, which separate regions I and II in figure 4, are generated

by the presence of the wedges; the remaining three are due to the irregular reflection of

the previous two. Contact surfaces directed towards the symmetry plane are generated at

the triple points because of the different levels of entropy produced by the wave system

on either side of the interaction. Shock waves separating regions II and IV impinge

on the viscous layer and are reflected as expansion waves from the subsonic part of it.

Such expansion fans encounter at their time the slip surfaces and are transformed in

compression waves. Additionally, the interaction between the impinging shocks and the

viscous layer provokes the separation of the latter in the crosswise direction. Therefore, a

streamwise vortex develops, resulting as an obstacle to the crossflow, and thus generating

a compression fan analogous to the one typical of two dimensional supersonic flows over

a ramp.

Depending on the geometrical and freestream conditions, the vortical structure can be

more or less complicated. In particular, with increasing the corner angle 0 and the sweep-

back angle ¢ (see figure 1), the separation is moved inboard and weakened. In both sides

of the symmetry plane, it could be constituted of one or two conical sinks and, in the lat-

ter case, a secondary vortex below the two sinks may appear. In any case, such separated

structures are characterized by the fact that the streamlines that detach from the wall are

not those that reattach. Vortical structures heavily affect the pressure and heat-flux dis-

tribution at the wall, that reach very high values in correspondence with reattachments.

Conversely, a heat-flux trough is usually present where separations occur. It is important

to notice that, in laminar regime, the shock-induced separation extends rather far from

the corner, affecting regions well outboard with respect to the position of the impinging

reflected shock. This feature is a characteristic of the laminar regime; on the contrary, in

the turbulent regime, at fixed shock intensity, the separation is less extended, its influence
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being in many cases limited to the vicinity of the embedded shock.

Between the primary vortex reattachment and the corner, a region of constant wall pres-

sure and decreasing heat fluxes appears. This small part of the flowfield, not dominated

by viscous/inviscid interactions, can be probably assimilated to a three-dimensional com-

pressible viscous layer, analogous to those studied theoretically at the end of the fifties

[4] [5].

The presence of Mach reflections is not limited to corner configurations composed of two

wedges, but can easily occur, close to the leading edge, also if the wedges are substituted

by two flat plates. It is well known, in fact, that the boundary layer developing on a flat

plate appears as a compression surface to the incoming stream and deviates it upwards;

in the supersonic regime, this results in the formation of a leading-edge shock wave which

potentially is sufficiently bent to give rise to an irregular reflection when interacting with

the shock generated by the opposite fiat plate; the subsequent flowfield configuration is

4
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Figure 5: Interpretation of the corner flowfield given in ref.[11]

then analogous to the one described above.

4 A review of past research

In the following, a survey on research works concerning corner and intake-type config-

urations in supersonic and laminar regime will be made. Probably, only a part of the

pertinent literature is presented herein. Therefore, apologies are offered in advance for

errors of omission.

The first complete research work concerning the problem of shock/viscous layer inter-

action in a corner was due to Stainback [6] [7], who, between 1960 and 1964, made

experimental tests on an intake-type configuration composed of two perpendicular flat

plates at Mach 4.95 and 8, in laminar regime. In those years, theoretical investigations on

compressible supersonic flows in corners were conducted using boundary layer methods

and assuming uniform external flow conditions [4] [5] or considering inviscid solutions [8]

[9], but the effect of the interference of these two features was not known. Stainback

presented pressure and heat-transfer measurements characterized by peak values notice-

ably higher than those that could be expected from boundary layer methods. Combining

measurements with oil-flow visualizations, he also argued, citing an idea originally due to

Bogdonoff and Vas [10], that a shock-induced vortex system was possibly responsible

for pressure and heat-transfer variations in the vicinity of the corner.

In the second half of the sixties, following these very first efforts, other experimental tests

and, for the first time, a numerical study, were conducted on corner flows. An important

contribution was offered by Charwatt and Redekopp, who, in 1967, published an article

[11] in which they presented surface flow visualizations, surface pressure measurements and

Pitot pressure surveys on symmetric and asymmetric corners at Mach numbers ranging

from 2.5 to 4 and in laminar regime. From those data they recognized the Mach reflection

shock configuration and also the presence of the compression fan due to the vortex system;

nevertheless, they attributed this last feature to inviscid effects (figure 5), interpreting it

as a " 'transmitted' compressive region" and not mentioning the presence of vortices. In

any case, their pioneer work was of great importance for the efforts to follow research,

5
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Figure 6: Sketch of the oil-flow patterns visualized in ref.[15]

as it depicted for the first time the corner flow structure. In 1967, Stainback and

Weinstein [12], proposing a review of the corner flow problem, stated that a separation

and a reattachment were present in the vicinity of the corner owing to the interaction of the

shocks system with the viscous layer. They enforced their argument by presenting surface

flow visualizations at Mach 8 and ftow field visualizations at Mach 20 (in helium) about

symmetric and asymmetric corners. In 1969, Cresci et al. [13] showed experimental data

and, for the first time, numerical solutions concerning a 90 ° corner constituted of two flat

plates at Mach 11.2 and in laminar regime. The experiments consisted in surface pressure

and heat transfer measurements and in Pitot pressure and total temperature surveys; the

computation was performed using a "parabolized" form of the Navier-Stokes equations

(a first version of the PNS equations adopted here in the following). The comparison

was not quantitative because the computations, for reasons of time, had not been carried

out as far downstream as the experiments were performed; however, both experimental

and numerical results showed the Mach reflection shock configuration and qualitatively

similar patterns.

In the seventies, further experimental research and also extensive numerical studies con:

tributed to increase the knowledge on laminar supersonic corner flows. In 1971, Watson

and Weinstein [14] presented results on symmetric corners with various wedge angles

(0 °, 5 °, 10 °) at Mach 20, in helium and in laminar regime. Correlating Pitot pressure

measurements and electron beam flow visualizations with heat-flux measurements and

oil-flow visualizations, they clearly recognized the presence of vortices in the flowfield;

from surface visualizations, they also noticed the feather-like pattern typical of the sec-

ondary separation, but they attributed it to the presence of an embedded shock. The

same interpretation was given also by Keyes and Watson [15], who in the same period



Figure 7: Interpretation of the cornerflowfield givenin ref.[17]

conductedstudiesat Mach 19in helium over symmetric and asymmetric corners (figure 6).

In 1971 Korkegi, in his "Survey of viscous interactions associated with high Mach num-

ber fight", correlated the presence of peaks and troughs in the heat transfer distribution

with the existence of a system of vortices rather than one vortex alone and attributed the

appearance of pressure disturbances far from the corner (the compression fan) to sepa-

ration. In 1972, an article by West and Korkegi [16] showed experimental results on

a symmetric corner with wedge angle of 9.5 ° at Mach 3 with Reynolds number ranging

from 0.4 × 106 to 60 x 106, thus covering both the laminar and turbulent regimes; the

authors observed that in the laminar regime the effects of the shock/viscous layer interac-

tion (separation) protract far from the point where the inner shock impinges, while in the

turbulent case the separation is limited up to the impingement point area. In 1974, Wat-

son [17] presented the continuation of the work conducted previously by Weinstein and

himself [14], including the study of corners with blunted leading edges; from the obtained

results he hypothesized the presence of a secondary vortex embedded in the primary one

and, perhaps for the first time, he drew a sketch of the vortex system as composed of a

separation vortex sheet (which, as the author evidenced, is not the same that reattaches),

of a primary vortex where the high speed flow is attracted and of an embedded secondary

vortex (figure 7). During the same year, Cooper and Hankey [18] published experi-

mental results obtained considering an intake-type configuration at Mach 12.5 in laminar

regime; their aim was to "determine the flowfield structure in a highly asymmetric axial

corner and associate areas of elevated heating rates with the accompanying flowfield phe-

nomena". The presence of a separating vortex and of a secondary vortex was evidenced

again, though the interpretation of the separation pattern was uncorrect (figure 8). The

authors also focused the attention on the inviscid flowfield, showing and discussing the

presence of a single triple point. In 1975, Kipke and Hummel [19] published results

concerning extensive studies on unswept corner configurations in laminar regime that had

been conducted at the TU Braunshweig. Many experiments had been performed at Mach
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Figure 8: Interpretation of the intake-type configuration flowfield given in ref.[18]

12.3 and 16 varying the wedges angle and the corner angle, demonstrating that the sep-

aration intensity (and therefore heat transfer and pressure peaks in correspondence with

the reattachment) increases with decreasing the corner angle. Moreover, a very detailed

description of the flowfield was given correlating pitot-pressure surveys, oil-flow visual-

izations and heat-transfer and wall pressure distributions. In 1976, Korkegi published a

study [20] on the existing experimental data on three-dimensional skewed shock wave in-

teractions with both laminar and turbulent viscous layers. After having pointed out that

extensive shock-induced separation is possible also for turbulent flows, but needs larger

shock intensities with respect to the laminar regime, he described the general structure of

three-dimensional shock-induced separated flow regions starting from unseparated flows

up to extensive separated flows.

In the middle of the seventies, numerical studies were conducted by Kutler [21], Shankar

et al. [22] and Anderson and Nangia [23], who all solved the conical Euler equations

using shock capturing techniques. Kutler [21], in particular, simulated the freestream

conditions of the West and Korgegi's tests [16], obtaining a satisfying agreement with

the highest Reynolds number experiments. In 1977, for the first time, Shang and Han-

key [24] published numerical results on a supersonic intake-type configuration that had

been obtained solving the full Navier-Stokes equations using a time-dependent shock cap-

turing technique. They reproduced Cooper and Hankey's results [18], obtaining a good

agreement with surface experimental measurements and confirming the presence of only

one triple point in the flowfield but, owing to the coarseness of the grid used (the fine one

was 8 × 32 × 36), the thickness of the viscous layer and thus the distance of the shock wave

system from the wall was underestimated. For the same reason, they did not capture the

secondary vortex, though its presence could be perceived from surface data; the authors

argued that the secondary separation could be caused by an embedded supersonic region

(created by the primary vortex) followed by a compression shock. In 1978, Hung and

MacCormack [25] were the first ones to obtain a numerical solution of viscous/inviscid

interactions for fully turbulent flows. The year after, Shang, Hankey and Petty [26]

reproduced numerically the West and Korkegi's [16] experiments including a transi-

tion model in their code. In 1980, Marconi [2][3] solved the conical Euler equations

using a shock fitting technique and compared his results with Kutler [21], West and

Korkegi[16] and Charwatt and Redekopp[ll].

During the eighties, the production of studies concerning supersonic laminar corner flows

was rather scarce. Nevertheless, in 1984, results of a new extensive campaign performed at
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the TU Braunshweig were published by MSllenst_idt[27]. Experiments were conducted at

Much 12.3 and in laminar regime on swept symmetric corner configurations with different

sweep angles and corner angles and showed that, with increasing leading edge sweep, the

shock system is displaced towards the corner and the vortex system is less intense. Such

results were republished in 1987 by Hummel [28], together with those by Kipke and

Hummel [19] previously cited.

In 1991, Qin, Scriba and Richards [29] showed numerical results obtained solving the

locally conical Navier-Stokes equations and reproducing the experiments performed by

MSllenstiidt [27]. A peculiarity of such results is that an additional couple of vortices was

captured close to the corner. In 1992, experimental investigations, described by Degrez

in reference [30], were conducted at the Von Ka.rman Institute for Fluid Dynamics on

intake-type configurations at Much 2 and Much 6 in laminar regime. There, perhaps

for the first time, tertiary separation was observed in the Much 6 case with wedge angles

greater than 6°. During the same year, Petzel and Hummel [31] presented experimental

results concerning an intake-type configuration with a 8 ° wedge at Much 12.6 in laminar

regime, showing the presence of a tertiary vortex on the flat plate surface (figure 9).

In 1991, Marsilio started numerical investigations on inviscid corner configurations at the

Politecnico di Torino. He solved the steady-state three-dimensional Euler equations using

a space-marching upwind finite volumes method. In his paper of 1993 [32], he showed

that, if the shocks intensities were sufficiently large, the contact surfaces tend to roll up,

generating two spiral singularities. The most outstanding feature, however, was that such

vortices, initially symmetric, are not stable and move to an asymmetric configuration,

which is stable. To verify the reliability of such results, comparisons were made with

other numerical experiments performed at the VKI solving the time-dependent conical

Euler equations: the resulting conclusions, published in [33] by Degrez et al., showed
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that asymmetric vortical solutions appear independently of the computational method

used (figure 10), but are very sensitive to numerical dissipation.

5 Present contribution: methodology

The previously cited research work on inviscid supersonic corner flows initiated by R. Mar-

silio has been continued and has found its natural evolution in the investigation of viscous

flows. Now, the only completely correct way of solving numerically three-dimensional

compressible viscous flows is to integrate in time the full Navier-Stokes equations until a

steady-state (if existent) is reached. This approach is affordable with current computer

capabilities, but, in particular if many grid points are needed to solve in detail complex

fluid-dynamic features, it could be excessively CPU-time and memory requiring and thus,

in practice, unaffordable. In the case of supersonic steady-state flows, however, this prac-

tical difficulty can be partially circumvented with the aid of the approximate form of the

full Navier-Stokes equations known as Parabolized Navier-Stokes equations.

The advantage brought by the Parabolized Navier-Stokes (PNS) equations is that they

can be solved using a space-marching technique, a characteristic which allows to spend

10



relatively short computation times and permits noticeablememorysavings(if compared
with a time dependent method). Therefore, it is possible to reinvest CPU-time and
memory in more refined grids, thus permitting a very neat resolution of the flowfield.
As a drawback, the parabolizingassumptionrequiresthe freestreamMuchnumber to be
supersonicand the streamwisevelocity alwayspositive; thus, streamwiseflow separations
areexcluded,but crossflowseparationsarepermitted. Moreover,the streamwisepressure
gradient is alteredin the subsonicpart of the flowfield [34],this fact implying that in that
region the contribution of the backwardtravelling signalsis neglected.
In this investigation, the three-dimensionalParabolizedNavier-Stokesequationsareused.
Sucha formulation is derivedfrom the steady-state full Navier-Stokes equations with the

aim of obtaining a system of equations representing a well posed problem with respect to

an integration performed using a space-marching technique. At this point, any derivative

in the streamwise direction contained in the stress tensor is neglected, all viscous and

heat fluxes in the streamwise direction are dropped and the pressure gradient in the

subsonic layer is properly altered. With such modifications, valid only for sufficiently

high Reynolds numbers, the Navier-Stokes equations are reduced to a set of hyperbolic-

parabolic equations [3411351.

The full Navier-Stokes equations can be written in integral conservative form in the fol-

lowing way:

Ot

where 12 represents an arbitrary volume inclosed in u surface S with unit normal ff positive

if directed outward.

System (1) can be reduced to non-dimensional form with the help of the following reference

values: L for length, p_ for density, T_ for temperature, _ for velocity, RToo for

energy per unit mass and #(T_) for viscosity. Therefore, from now on, the flowfield

variables should be considered as non-dimensional. In particular, W is the hypervector

of conservative variables, tensor F I contains the inviscid fluxes and tensor Fv contains

the viscous fluxes:

w = {p,p¢,E) T (2)
FI = {flq, p-[ + pq@q,(E + p)q-_ T (3)

v'_M°° {6,-7,-kVT - _. g}T (4)
FV - Re_

Quantities p, p and _ = {u, v, w} T are respectively the local density, pressure and velocity;

E represents the total energy per unit volume:

e is the internal energy per unit mass, 3//00 and Re_ are the freestream Much number and

Reynolds number, 7 is the ratio of the specific heats and, finally, 7 is the unit matrix.

Viscous stresses are contained in tensor 7, with

_-ij = # \_xi +-_xj ] - -_(V_6ij (6)

11



where 6ij is the KrSneker's symbol. The viscosity is calculated via Sutherland's law:

# = T3/2 ( I+T+ Tref)TTef
(7)

where
l10.4K

T_f- T_

and the thermal conductivity k is obtained according to the relation:

(8)

k- " 7 (9)
Pr 7 - 1

where Pr is the Prandtl number. FinMly, the perfect gas relationship completes the set

of equations

P : T (10)
P

In the parabolizing assumption, assuming the streamlines direction to be fairly close to

the x-axis, the components of the stress tensor necessary to evaluate the viscous fluxes

are reduced to the following form:

2

2

,_*_ = ._. (2v_ - Wz)

2

y : _-y_ : #u v

.
z = _zy = "(v_ + wy)

(11)

(12)

(13)

(14)

(15)
(16)

Moreover, the x-component of the temperature gradient is neglected:

VT*= Tyf + Tzf_ (17)

The streamwise pressure gradient is splitted according to the technique suggested by

Vigneron, Rakich and Tannehill in reference [34]:

p_ = wp_ + (1 - w)p_ (18)

If only the first term of the RHS of equation (18) is retained and the second term is

considered as a source term, the set of equations containing only the convective terms is

hyperbolic, provided that

u>0

< for M_ < 1 (19)
1+ (7- 1)M_

_=1 for M_>I

12



whereM_ is the local Mach number in the x-direction. The first condition contained in

equations (19) prevents the PNS approximation to be used when the flow separates in

the streamwise direction. A short analysis of the second condition shows that w is equal

to 1 when M_ = 1 and is null when M_ = 0; this means that the effect of the streamwise

pressure gradient is completely neglected at the wall and is more and more considered as

the flow approaches supersonicity. For M_ greater than 1 the effect of p, will be entirely

taken into account and the value of w will be unity. Of course, since a space-marching

integration is desired, the freestream Mach number will necessarily have to be supersonic.

Combining the cited assumptions, system (1) is finally reduced to the following form:

where

F i = {p(,pTZ+p(®q,(E+p)_ T

F_¢ - v/-TM_ {6,-r_,-kVT * - _. q_T
Redo

P = {6,-(1-w)pI*---z, 6} T

and I* and I** are scalar matrices with:

(21)

(22)

(23)

m

diag I* = (w,l,1) (24)

diag F = (1,0,0) (25)

Since viscous and heat fluxes in the steamwise direction are dropped, vector n_* contains

only the components in the y-direction and in the z-direction of the normal unit vector,
that is n_* = (0, ny, nz).

Source term P' must be added to make the integral formulation coherent with equation

(18), as noticed in references [36] and [37]. In fact, the corresponding integral form of wp_
is:

Therefore, we have:

where _ is a scalar matrix with

P' = {0,_,6} T (27)

diag -_= (p / canJS, O, O) (28)

In the numerical approach presented here, explained in detail in reference [38], governing

equations are integrated in an explicit fashion and the physical domain is discretized

according to a finite volume approach. The convective part of the equations (inviscid

fluxes) is treated using a flux-difference-splitting technique with an approximate solution

of a Riemann problem at each cell interface conceived for steady flows [39], while diffusive

terms (viscous fluxes) are calculated using a centered scheme and exploiting the Gauss

theorem in a discrete form. A second order accuracy is reached following the guidelines of

the Essentially Non Oscillatory schemes [40] with a properly limited linear reconstruction

of the solution inside each cell and at each step of integration. Presently, only inert gases

in laminar regime are considered, but the future addition of thermochemical or turbulence

models is certainly feasible.
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6 Present contribution: results

Unswept symmetric corner configurations have been investigated simulating the same ge-

ometrical and freestream conditions that characterize some of the experimental results

obtained by Kipke and Hummel and presented in references [19] and [28]. In particu-

lar, comparisons have been carried out in the following cases (see also figure 1 for the

interpretation of the symbols):

# 5 0 Moo

1 8° 90 ° 12.3

2 8° 90 ° 16.0

3 8° 120 ° 16.0

Reoo/m Too[K]

5 × 106 45.3

1.7 × 106 25.9

1.7 × 106 25.9

%[K]
300

300

300

with a Prandtl number of 0.72.

The geometry of case #1 has also been used to perform some further numerical experi-

ments, that will be shown in the following sections.

6.1 Salient features and comparisons with experiments

The first results to be presented are related to test case #1. The grid used was composed

of 100 x 100 cells, with about 50 cell s in the normal direction inside the shock layer.

A general idea of the computed flowfield can be perceived from figure 11, where crossflow

streamlines, static pressure contours, Mach number contours and stagnation temperature

contours corresponding to a local Reynolds number Rex = 450000 (x=0.09 m) have been

plotted. Crossflow streamlines are obtained projecting the velocity vectors on a sphere

centered at the intersection of the wedges leading edges; such a representation makes it

possible to visualize the crossflow structure. Observing figure l la, it is possible to notice

the presence of the vortex system that characterize supersonic corner configurations; such

a separated structure will be analyzed in greater detail further on. The related wave

system is clearly shown in figure llb, where it is possible to appreciate the Mach reflection,

the compression fan generated by the presence of the separated structure and the reflection

of the impinging shock on the viscous layer. The latter interaction results in an expansion

fan that, interfering with the slip surfaces, generates a compression wave. In the vicinity of

the corner, a region of high but constant pressure is present. The Mach number contours

drawn in figure llc add to the previous pictures the slip surfaces and show the viscous

layer thickness; it must be stressed that the subsonic region is very thin, as demonstrated

by the fact that the contour corresponding to Mach 1 is almost undistinguishable from

the wall. Finally, the stagnation temperature contours are shown to demonstrate that the

flow that reattaches owns almost the whole total enthalpy of the freestream, since the low

energy flow coming from the viscous layer is entirely swallowed by the vortical structures.

In figure 12a, the vortical structure that appeared in figure lla has been enlarged. It is

possible to see a primary separated structure composed of two foci and a simple secondary

vortex. The topological scheme is shown in figure 12b, that should be compared with

figure 12c. Particles belonging to the slowest part of the boundary layer are captured by

the right-hand side focus (F1A) of the primary separation, that starts in sl; this happens

up to a certain distance from the wall: continuing to move apart, faster particles are

encountered, that are captured by the left-hand side focus (F1B) of the primary separation;

14
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Figure 11: Computed a)crossflow streamlines, b)static pressure contours, c)Mach number

contours and d)total temperature contours for test case _1.

the entire viscous layer is thus swallowed by the vortical structure. Proceeding further

upwards, streamlines belonging to the inviscid part of the shock layer are captured again

by focus F1A; therefore, a saddle must exist between the two foci. Then, a small amount

of particles is entrained in the secondary vortex, whose focus is F2 and that is also defined

by the separation and reattachment lines s2 and r2 (see also the zoomed view in figure

12d). Finally, a streamline reattaches in rl, closing in this way the primary separation;

such particles are coming from the inviscid part of the flowfield, and thus own a great

amount of energy: it is for this reason that, when they stop at the stagnation point,

they increase noticeably their temperature, provoking an intense heat flux towards the

cold wall. Streamlines above the reattaching one are deviated towards the corner and

appear as a supersonic jet; in this region it is possible to appreciate other singularities,

that will be considered in a following section. By now, it is important to notice that the

separated structure just described is topologically correct. In fact, it is composed of four

half-saddles (separations and reattachments), three foci (two belonging to the primary

separation and one to the secondary vortex) and one saddle (between F1A and F1B).

Attributing a positive unit value to each focus and a negative unit value to each saddle

[41], the total gives zero, that means that the considered structure is self-consistent.
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Up to now, only results concerning a particular cross section have been presented, but

nothing has been shown to give a general idea of the evolution of the flow along the corner.

Figure 13 fills such a gap, displaying the limiting streamlines at the wall, which are the

numerical equivalent of oil-flow visualizations; crossflow streamlines have been placed

beside for a better comprehension of the picture. The separation and reattachment of the

primary vortex are well in evidence, and also the presence of the secondary vortex at the

wall can be perceived. It is possible to notice that streamlines are deviated before reaching

the separation line, thus generating an upstream influence line that is the forwardmost

extent of the interaction. It should be noted that the presence of the vortical structures

and of the related compression fan transports the three-dimensional effects due to the

corner at noticeable distances from it inside the shock layer, making it necessary to fix

rather ample external boundaries. If a square or rectangular grid is used, this results in

having a lot of points outside the shock layer. To avoid to waste CPU-time in computing

points for which it is known a priori that the freestream conditions apply, a procedure has

been implemented that detects the position of the shock layer at each step of integration

and solves the flowfield only in the part of the domain containing it.

The same computed results presented above are now compared with analogous experimen-

tal data extracted from reference [28]. In figure 14, Pitot pressure contours corresponding

to a distance from the leading edge of 0.09 m are shown. The contours shapes fit well,

and also the qualitative agreement is quite good. In fact, the wedge-shock position is

not exactly the same, as the computed one corresponds to a local slope of about 4.9 °

with respect to the wedge, versus an angle of about 5.5 ° for the experiments (the inviscid
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Figure 13: Limiting streamlines at the wail and crossflow streamlines for test case #1.

value should be 3.3°). Nevertheless, the maximum Pitot pressure value is 6.70 for the

computation, and experiments show their highest value on the contour corresponding to

6.42.

In addition, in figure 15a, numerical and experimental static pressures at the wall are

overlaid, showing a satisfactory agreement. Here, as in the following, static pressures

at the wall have been adimensioned with pK, which is the pressure on a 2D ramp with

the same slope of the wedge. In figure 15c, the limiting flow direction at the wall is

compared. The two curves are very similar close to the corner, as demonstrated by the

fact that the reattachment of the primary vortex is detected in the same position (note

that _b = 0 indicates the presence of a separation or of a reattachment). Nevertheless,

receding from the intersection of the ramps, some not negligible differences appear. In

the computation, the secondary vortex is smaller and closer to the corner (though not

in such a great extent) and the separation of the primary vortex is located in a different

position with respect to the experiments. Such discrepancies might possibly be due to the

fact that, approaching the lateral boundaries of the model, experiments could be affected

by side-effects or by interference with the tunnel boundary layer. On the other hand, it

should be also recognized the extreme sensitivity of the flow structure to the upstream

Mach number and to the uncertainty about its level and its uniformity along the tunnel

axis [42]. Finally, in figure 15b, the heat flux at the wall is compared. As it could be

expected after the previous discussion, results are similar as far as the reattachment of

the primary vortex is concerned, with the peak of heat transfer in the same position and

showing a similar magnitude. Conversely, the location of the peak related to the secondary

vortex is different, though the value is the same. Other discrepancies concern the fact

that, in the numerical results, we find no trace of the peak which, in the experimental

curve, is signaled at g __ 0.09. Last, it can be noticed that the computation predicts an

almost null heat flux locally at the corner, in contrast with the experiments; in this case

we think it is reasonable to agree with the numerical result, since very close to the corner
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Figure 14: Pitot pressure contours for test case #1: (a)experiment [28], (b)computation.

the temperature varies very smoothly, and on the other hand the measurement technique

used cannot approach too much to the corner itself.

In order to adequately address the accuracy of the computation, the results obtained

with the 100xl00 grid are compared with those resulting from a 60x60 grid. The main

features of the flowfield are unchanged, as it can be seen from figure 16, where pitot

pressure contours are shown. The major difference is related to the secondary vortex:

with the finer mesh it is fully captured, while with the coarser one its presence is just

sensed. A proof to this statement can be found in figures 17 and 18. In figure 17, crossflow

streamlines are presented: in the left picture (60x60 mesh), the undulation of the crossflow

streamlines suggests the presence of the secondary vortex, but in the right one (100xl00

mesh), the vortex is well evident. In figure 18, the flow direction at the wall is shown

again: it can be seen that in the case of the finer mesh (100xl00), a crossfiow reversal

is present at about _ = 0.12, while with the coarser mesh (60x60) this feature does not

exist.

Test case _2 is characterized by a stronger viscous interaction with respect to test case

#1, since the Mach number is greater and the Reynolds number is lower. Thus, a thicker

viscous layer and a thinner inviscid portion of the shock layer are expected. Such features

are shown in figures 19 and 20, where crossflow streamlines and Mach number contours

are shown. In this occasion, the secondary separation has not been captured by numerical

tests, and also the experimental data that will be shown in the following do not help to

understand if it exists or not. Investigations of the flow direction at the wall, reporied

in figure 21, show that the limiting streamlines below the primary vortex tend to deviate

as if a secondary separation was incipient but still not developed, though it is not clear

whether this is the real physical picture or if a finer grid would reveal the effective presence

of small vortex there. It is interesting to note that, in any case, the primary separation is

again constituted of two loci and one saddle, a configuration that is topologically possible

also without the presence of the secondary embedded vortex.

In figures 22a and 22b, Pitot-pressure contours at x=0.09 m are compared, showing a good

agreement. In figure 22c, the pressure distribution at the wall is shown. Finally, in figure

22d, heat fluxes at the wall are compared; the agreement is good, though, as before, there

is a local difference at the corner and a second peak in the experimental results. The latter
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[28] and computations.

feature may be due to the presence of a region of high speed flow underneath the primary

vortex, where very steep total pressure gradients exist and which is possibly not properly

described by the numerics. It should be also noticed that no secondary reattachment (and

therefore also separation) seems to be shown by experimental measurements.

Test case #3 is characterized by a corner angle of 120 °, while the remaining geometrical

and freestream conditions are those of test case #2. As, increasing the corner angle,

the embedded shocks weaken and pressure gradients are in general smaller, then also the

flow separation is less intense with respect to a corner of 90 °. The greater amplitude of

the corner angle determines a lower pressure level in the corner region, so that vortical

structures are more inboard. From the crossflow streamlines displayed in figure 24, it

possible to see that also in this case the secondary separation is not present, though the

primary vortex is again splitted in two parts. Moreover, plots of the flow direction at the

wall do not indicate neither an incipient separation.

A comparison with experimental results is made in figure 23: the agreement seems to be

good, though the presence of the second peak can be noticed in the experimental heat

transfer measurements, but not in the numerical results.

6.2 The effect of the local Reynolds number

Some numerical experiments have been performed on test case #1 to investigate the effect

of the local Reynolds number Re= on the conicity of the flow and on the development of

shock-induced vortical structures. Thus, the same upstream flow conditions and different

lengths of the corner configuration will be assumed. At the highest Reynolds numbers

the flow is likely to be turbulent and therefore the corresponding results presented here

are not realistic. Nevertheless, it was decided to show them just to demonstrate how the

flowfield is modified depending whether viscous or inviscid effects dominate.

19



0.300

0.200

¥

0.100

0.000

0.000

0.300

0.200

¥

0.100

0.000

0.1 O0 0.200 0.300 0.000
2_

0.100 0.200 0.300
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(b)lOOxlO0 mesh.

In figure 25, wall pressure distributions corresponding to different local Reynolds numbers

have been plotted. Pressures have been dimensioned using the corresponding inviscid

value and distances using the distance x from the leading edge. If the flow was conical, the

six graphs shown here should overlay, but this is not the case. It should be noticed that

test case #1 is characterized by a hypersonic freestream Mach number. Thus, viscous

interaction effects are rather strong, as evidenced by the graphs, that show that wall

pressure distributions far from the corner, where the flow is essentially two-dimensional,

are higher, for low local Reynolds numbers, than the inviscid value. Therefore, the whole

flowfield is not conical as long as strong viscous interaction effects are present.

Moreover, also the structure of the vortex system seems to change with increasing the

distance from the leading edge. For low local Reynolds numbers, the flow is dominated

by transport phenomena. Thus, the viscous layer is very thick and occupies a large

portion of the shock layer (figures 26 and 27). According to numerical results, only the

primary separation is present, splitted in two parts as usual (figure 28). Proceeding to

move downstream, the secondary separation appears, as already shown in figure 12. For

even larger local Reynolds numbers (that in effect are likely to correspond to turbulent

conditions), the primary separation appears to be composed of three foci (figure 29), and

the embryo of the vortical structures that characterize the Euler solution [32] can be

perceived close to the symmetry line (figure 30).

7 Conclusions

Despite the simplicity of their geometry, supersonic corner configurations represent a

rather complex fluid dynamic test case, as, owing to the mutual interaction between

inviscid and viscous effects, important vortical structures that strongly characterize the
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flowfield are created. Since the very first studies, that started about 35 years ago, the

most important flowfield features are, at this time, known and understood. Concerning

the laminar regime, however, it is still not very clear which is the sensitivity of the flowfield

features to the geometrical and upstream conditions, that seem to influence very much

the extension and the complexity of the vortical structures. It is the hope of the authors

to have suggested, through this paper, that the computational fluid dynamics, strictly

tied to experimental tests in a process of mutual validation, could be considered as a very

useful tool to conduct such studies in a reasonable time.
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Figure 19: Computed crossflow streamlines for test case #2.
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Figure 22: Test case #2. Pitot pressure contours:

Wall:(c)pressure,(d)heat transfer.
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(a)experiment [19], (b)computation.
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Figure 23: Test case #3. Pitot pressure contours: (a)experiment[19], (b)computation.
Wall: (c)pressure, (d) heat transfer.
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Figure 24: Computed crossflow streamlines for test case #3.
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Figure 25: Test case #1: wall pressure distributions for different local Reynolds numbers.
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Figure 26: Computed pressure contours for test case _1 at Re,: = 85000.
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Figure 27: Computed Mach number contours for test case #1 at Rex = 85000.

Re= 85000

Figure 28: Computed crossflow streamlines for test case #1 at Rex = 85000.
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Figure 29: Computed crossflow streamlines for test case #1 at Rex = 4250000.
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Figure 30: Computed crossflow streamlines for test case #1 at Rex = 6000000.
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